

Transfer in Reinforcement Learning Via Shared Q-Network

Zongze Lia, Zijia Yan, Tingting Zhang, and Yuqiang Qu
Department of Software Engineering, Jilin University, Changchun, China

alizz5516@mails.jlu.edu.cn

Keywords: Transfer, Reinforcement Learning, Q-network

Abstract: Transfer learning is one of the hot issues in the field of reinforcement learning. Many
reinforcement learning algorithms can only solve a single special task, and their models and
algorithms are designed for a single state space, which is not universal. When tasks change, it will
cost a lot to change the model and configuration of reinforcement learning algorithm, or even it is
not feasible. Transfer learning is born to solve this problem. Through the transfer of learning
experience or learning method, the machine learning algorithm can keep the effectiveness and
efficiency in the constantly updated tasks and data.

1. Introduction
In this paper, we will explain the transfer algorithm of deep reinforcement learning based on

shared Q-network, and improve the convergence speed of new tasks. In section 2, we will introduce
reinforcement learning, transfer learning and reinforcement learning transfer algorithm based on
common characteristics. In section 3, we will introduce shared q-network, and in section 4, we will
introduce shaping function which can be transferred from experience in shared q-network to
q-network. The last section 5 is our summary.

2. Background
In this section, we present related work and background concepts such as Markov process,

reinforcement learning, deep q-Learning and transfer learning.

2.1 Reinforcement Learning
A reinforcement learning environment is typically formalized by means of a Markov decision

process (MDP). The Markov decision process can be expressed as a tuple(𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, 𝛾𝛾). Where S is
the set of states in the decision-making process, A is the set of actions in the decision-making
process, P is the transition probability between states, R is the return after taking one action to reach
the next state, and 𝛾𝛾 is the discount factor.

In MDP, the decision can be represented by π(𝑎𝑎|𝑠𝑠), which means the probability of action 𝑎𝑎 in
𝑠𝑠 state at step t. The goal is to learn a deterministic stationary policy π, which maps each state to an
action, such that the value function of a state s, i.e., its expected return received from time step t and
onwards, is maximized.

At time t, action a is selected with probability π in s state, and the state action value generated by
action a is 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎).The optimal state-action function is defined as 𝑞𝑞∗(𝑠𝑠,𝑎𝑎) = 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋𝑞𝑞(𝑠𝑠,𝑎𝑎), which
represents the maximum state-action value in all policies.[1]

 𝑞𝑞∗ (𝑠𝑠,𝑎𝑎) = 𝑅𝑅𝑠𝑠𝑎𝑎 + 𝛾𝛾�𝑃𝑃𝑠𝑠𝑠𝑠′𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑞𝑞𝜋𝜋∗ (𝑠𝑠′, 𝑎𝑎′)
𝑠𝑠′∈𝑆𝑆

Watkins introduced an algorithm to iteratively approximate 𝑞𝑞∗.In the q-learning algorithm, a
q-table containing state-action pairs is stored. Each entry in the table contains a 𝑞𝑞�(𝑠𝑠,𝑎𝑎), which is the
current estimate of the actual 𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) value. 𝑞𝑞�(𝑠𝑠,𝑎𝑎) is updated according to the following rules,

𝑞𝑞�(𝑠𝑠,𝑎𝑎) ← (1 − 𝛼𝛼𝑡𝑡)𝑞𝑞�(𝑠𝑠,𝑎𝑎) + 𝛼𝛼𝑡𝑡(𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑞𝑞�(𝑠𝑠′,𝑎𝑎′))

2019 4th International Conference on Automatic Control and Mechatronic Engineering (ACME 2019)

Published by CSP © 2019 the Authors 269

Where α t is the learning rate at time step t and r is the reward received for performing action an
in state s. [2]

The purpose of reinforcement learning is to find the optimal strategy to maximize the cumulative
return function.

2.2 Deep Q-learning
When the set of states for a problem is large, the algorithm described above becomes unusable.

And this is, one possible way to model it is to approximate the value function. A state value function
𝑣𝑣� is introduced, which is described by a parameter 𝑤𝑤 and takes state 𝑠𝑠 as input. After calculation,
the value of state 𝑠𝑠 is obtained.

𝑣𝑣�(𝑠𝑠, w) ≈ 𝑣𝑣𝜋𝜋(𝑠𝑠)

Similarly, an action value function q is introduced, which is described by a parameter 𝑤𝑤 and
accepts state 𝑠𝑠 and action 𝑎𝑎 as input. After calculation, the action value is obtained.

𝑞𝑞�(𝑠𝑠,𝑎𝑎,𝑤𝑤) ≈ 𝑞𝑞𝜋𝜋(𝑠𝑠,𝑎𝑎)
There are many approximation methods for the value function, the most widely used of which is

the neural network. For the state value function, the input of the neural network is the eigenvector of
state 𝑠𝑠, and the output is state value 𝑣𝑣�(𝑠𝑠,𝑤𝑤). For the action value function, there are two methods:
one is input state 𝑠𝑠 and action 𝑎𝑎, and the corresponding action value 𝑞𝑞�(𝑠𝑠, 𝑎𝑎,𝑤𝑤) is output; the other
is the eigenvector of only input state 𝑠𝑠, and the number of actions in the action set will have as many
output .

The basic idea of DQN algorithm comes from q-learning, but different from q-learning, the
calculation of its q-value is not directly calculated by the state value 𝑠𝑠 and the action 𝑎𝑎, but by the
q-network. The input of DQN is the state vector ∅(s) corresponding to state 𝑠𝑠, and the output is the
action value function q of all actions in this state.

The main technique used by DQN is experience replay, that is, to save the rewards and status
updates from each interaction with the environment for future q-value updates. The target q-value
obtained through the experience replay and the q-value obtained through the calculation of the
q-network must have errors, so we can update the parameter w of the neural network through the
reverse propagation of the gradient. When w converges, we get the approximate q value, and then the
greedy strategy is solved. [3]

2.3 Transfer Learning
Transfer learning is an algorithm that gives the source domain and the source task, the target

domain and the target task, and USES the source domain to obtain some knowledge in solving the
task to improve the target task.

2.3.1 Related Task Share Common Features
Transfer learning needs to be carried out between similar but different tasks, which need to satisfy

the need to be able to apply the experience of one task to another to a certain extent. Shared features
are special states have same semantic between all the tasks.

For example, each robot has a heat sensor that allows the robot to collect heat information from
the room. Or there is a signal receiver that can pick up signals from several sources in the room. If
the heat information and signals in the example above are somehow related to the object being
sought, then heat and signals can be seen as shared features in both rooms. Thus, the 𝑖𝑖𝑡𝑡ℎ Markov
process 𝑀𝑀𝑖𝑖 can be defined as:

𝑀𝑀𝑖𝑖 =< 𝑆𝑆𝑖𝑖 ,𝐴𝐴𝑖𝑖 ,𝑃𝑃𝑖𝑖 ,𝑅𝑅𝑖𝑖 ,𝐷𝐷 >

Where 𝐷𝐷 is the shared feature space. All markov processes share a 𝐷𝐷 and use it as a bridge for
the transfer of experience. When a valued function in the state space is updated, a valued function in
the shared feature space is also updated.[4]

270

2.3.2 Shaping
Shaping function is used to transfer experiences in the shared feature space to the state space of

the new task. The 𝑖𝑖𝑡𝑡ℎ procedure in 𝑀𝑀𝑗𝑗 is defined as:

𝜎𝜎𝑖𝑖
𝑗𝑗 =< 𝑠𝑠𝑖𝑖

𝑗𝑗 ,𝑑𝑑𝑖𝑖
𝑗𝑗 , 𝑟𝑟𝑖𝑖

𝑗𝑗 , 𝑣𝑣𝑖𝑖
𝑗𝑗 >

Where 𝑠𝑠 is the state, 𝑑𝑑 is the feature in the shared feature space, 𝑟𝑟 is the reward of the current
state, 𝑣𝑣 is the value of the value function, thus the mapping from s to d can be established:

𝐹𝐹: 𝑠𝑠𝑖𝑖
𝑗𝑗 ↔ 𝑑𝑑𝑖𝑖

𝑗𝑗

Similar to the value function:

𝑉𝑉𝑗𝑗: 𝑠𝑠𝑖𝑖
𝑗𝑗 → 𝑣𝑣𝑖𝑖

𝑗𝑗

Mapping of shared features to value functions can be established:

𝐿𝐿: 𝑑𝑑𝑖𝑖
𝑗𝑗 → 𝑣𝑣𝑖𝑖

𝑗𝑗

During the empirical transfer, the corresponding feature of the state in 𝐹𝐹 is found first, and then
the value function value of the feature is obtained by 𝐿𝐿, and finally the value function of the state
space is initialized by 𝑉𝑉 with the newly obtained returns. So that the value function is closer to the
convergent value. [4]

3. Knowledge Transfer
In this section, we show that after the agent has processed multiple related tasks, the agent can

transfer the existing knowledge to the transfer task through the shaping function, and the
performance of the agent dealing the transferred task will be significantly improved.

We use an experiment (maze task with an artificial shared feature space) to demonstrate the effect
of knowledge transfer in dealing with a series of related tasks.

3.1 Shared Q-network
When dealing with a series of tasks, the previous experience does not apply to new tasks due to

the different environments of the tasks. Each task should have a separate q network. When dealing
with new tasks, these q-networks are built in different environments and cannot be shared or
transferred. The experience in the shared feature space can be applied to all states, so we need to use
the experience in this space to facilitate transfer to new tasks.

Figure 1. Structure of state space and share q-network.

271

Figure 2. Mapping structure.

We use shared q-network built on a shared feature space to solve this problem. As shown in Fig.1,
when the agent processes the task, the current state, action, reward, and arrival status are stored as
experience in the q-network experience pool. At the same time, the current shared feature, actions,
reward, and arrival shared feature are stored in the experience pool of the share q-network. Similarly,
when q-network is trained in the extraction experience, the shared q-network is also trained from the
experience of the shared feature experience pool.

The share features are not included in a single task, and each task contains only a subset of all the
shared features (this problem will be explained in the experiment). Therefore, training a share
q-network with only one task will only make it converge on the share features included in this task,
but not for new tasks. So we need to use multiple tasks to train the share q-network until it converges
on almost all share features.

3.2 Learning Shaping Function
In the traditional reinforcement learning algorithm, the q value is directly saved by the q-table.

Q-table can be directly initialized by the shaping function mentioned in 2.4.2, and the knowledge
transfer is conveniently performed. However, the DQN uses a q network that requires an input state
to obtain a q value, which makes it impossible to initialize directly. Furthermore, enumerating all the
states for initialization when using DQN is an unrealistic task.

Similarly, we can get the states, their corresponding shared features and their q-value tables from
the three functions F, V, and L mentioned in 2.4.2. Similar to DQN, we directly optimize the
q-network of the transfer task to make its q value in this state close to share q-network. The
difference is that DQN approximates the q value corresponding to the action selected by the agent,
and the loss of other actions is set to 0. In the transfer, the q values of all actions are approximated.
So after getting two q-tables, you can train the network without modification.

In order to solve the problem of not being able to enumerate all the states, the approach we take is
to transfer during the training process. In other words, not all the states are initialized before training.
When the transferred task is processed, the agent determines whether the state needs to be transferred
after each state is reached. This avoids the problem of enumerating unknowns and enumerating all
states.

3.3 Maze Experiment
In this section, we will test the effect of knowledge transfer by taking a maze experiment. In the

maze experiment, shared features are added manually to ensure that knowledge can be transferred
between tasks.

Each maze is a square space divided into several grids, some of which have an agent, trap or
target with a size of 1 grid. The trap position in each maze is random. The start position of the agent
is fixed at the upper left corner, and the target is fixed at the lower right corner. If the agent moves to

272

any traps, it will return to the starting point, and the goal of the task is to move the agent to the target.
Fig. 3 is an example of a 10*10 scale.

Each state in the maze can be represented by two coordinates, x and y. The agent can move in one
of four directions: up, down, left, and right, one grid at a time. If the agent moves outside the
boundary, it will not move in place. The rewards for agents moving to traps, targets, and blank grids
are -1, 10, -0.1, respectively.

But in this task, there is no shared feature space for all random maze, so we add 4 different
beacons that can emit signals in the maze. The agent can receive signals and calculate the distance to
the four beacons. In other words, by assigning 4 beacons from 0 to 3, the agent can get the distance
to the four beacons. If there is some relationship between these distances and the target, the distances
from the agent to the beacons can be taken as the shared feature space.

3.3.1 Experimental Structure
In order to record the convergence of the experiment, the agent needs to reach the target 50 times

for each execution of the task. First, several training tasks are performed to train the shared
q-network. Then several transfer tasks are executed. These tasks need to be executed twice and the
shared q-network cannot be trained. In the first round, only q-network was trained. In the second
round, Shared q-network was used to complete knowledge transfer, and then q-network was trained.

Figure 3. A 10*10 maze experiment. The goal is shown as a green block, traps are shown as yellow

block, and agent is shown as a red block.

Figure 4. A 10*10 maze with beacons. Beacons are shown as black circle.

273

Figure 5. Steps to goal against episodes in the transfer task for agent that have completed 5 training

tasks.

Agents perform reinforcement learning using DQN algorithm (α = 0.01, γ = 0.9, ε = 0.9,
memory size = 5000, butch size = 500, replace target iterator = 500). Q-network and Shared
q-network have the same structure. The neural network has two layers with ten neurons in each layer.
The coefficient is initialized to a random number within (0,1) and the constant is initialized to 0. The
active function used in the first layer is relu6, the optimization algorithm is RMSprop, and the loss is
the mean of the square deviation of the q value.

3.3.2 Following a Homing Beacon
The four beacons are numbered from 0 to 3. During the entire experiment, the source numbered 0

is always on the target, and the other three beacons are randomly distributed in the maze. The closer
to the beacon numbered 0, the higher reward should be, and the signals from the other 3 beacons
should be ignored. Fig. 4 shows a 10*10 maze with beacons.

Fig. 5 shows the number of steps required to reach the goal as the agents repeat episodes in the
transfer task, after completing 5 training task, compared to the number of steps required by agents
without completing training task. It can be seen that the number of steps of the agent without
knowledge transfer rapidly drops from 20000 to near 0 and converges. The number of steps of agent
who carried out knowledge transfer started at around 3,000, but did not converge after a period of
decline, and there was a small fluctuation. In general, the agent completes five training tasks, which
greatly reduces the initial number of steps, but also causes the number of steps to not converge.

The agent in Fig. 6 completed 10 training tasks, the other being the same as Fig. 5. Similar to the
agent trained 5 times, the number of steps of the agent without knowledge transfer rapidly drops
from 50000 to around 0 and converges. The difference is that the transferred agent begins to
converge after a brief fluctuation around 10,000 steps and 0 steps. By increasing the number of
training tasks, the initial steps are reduced and the number of steps is converged.

3.4 Discussion and Summary
These two experiments successfully demonstrated that even an agent that only completed a small

number of training tasks can significantly reduce the number of steps to reach the target after the
knowledge transfer, and the number of episodes during convergence is basically the same.

The non-convergence in the first experiment alerted us: when the shared q-network training is
insufficient, the transfer knowledge may have negative consequences, that is, negative transfer. In
this experiment, there are two factors that may cause negative transfer.

First, although the features in the shared feature space are applicable in all tasks and have a
certain relationship with the target, the q value in the DQN algorithm is determined by the two
parameters of state and action. In this experiment, the shared feature space and the state space have
the same actions. However, it can be found that in different maze, the same distance (meaning the

274

same feature) is not directly related to the action that should be selected. This problem can be solved
by a lot of training, and all the q values of the features close to the target should be higher.

Second, the agent fits the q-network after it reaches the state rather than the overall fit. Since the
fit changes the entire neural network, it is possible to change the network that has completed the fit,
resulting in a negative transfer.

Figure 6. Steps to goal against episodes in the transfer task for agent that have completed 10

training tasks.

4. Summary
In general, training shared q-network and transfer knowledge through a series of related tasks can

significantly reduce the initial number of learning. However, the selection of the shared feature space
needs attention, and the shared q-network should be trained with enough training tasks. Otherwise,
negative transfer will result, causing the data to not converge.

References
[1] Richard S. Sutton and Andrew G. Barto, “Reinforcement Learning: An Introduction”, the
MIT Press, Mar. 1998.
[2] Watkins C.J.C.H., “Learning from Delayed Rewards”, Cambridge University.
[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, et al.
“Human-level control through deep reinforcement learning”, nature, vol. 518, Feb. 2015, pp.
529-533, doi: 10.1038/nature14236.
[4] George Konidaris, Ilya Scheidwasser and Andrew G. Barto, “Transfer in Reinforcement
Learning via Shared Features” Journal of Machine Learning Research, vol.13, May. 2012, pp.
1333-1371

275

	1. Introduction
	2. Background
	3. Knowledge Transfer
	4. Summary
	References

